On the number of minimal completely separating systems and antichains in a Boolean lattice

نویسندگان

  • Ian T. Roberts
  • Leanne J. Rylands
  • Terry Montag
  • Martin Grüttmüller
چکیده

An (n)completely separating system C ((n)CSS) is a collection of blocks of [n] = {1, . . . , n} such that for all distinct a, b ∈ [n] there are blocks A,B ∈ C with a ∈ A \B and b ∈ B \A. An (n)CSS is minimal if it contains the minimum possible number of blocks for a CSS on [n]. The number of non-isomorphic minimal (n)CSSs is determined for 11 ≤ n ≤ 35. This also provides an enumeration of a natural class of antichains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Antichains and Linear Extensions in Generalizations of the Boolean Lattice

In 1897, Dedekind [6] posed the problem of estimating the number of antichains in the Boolean lattice; in particular, he asked whether the logarithm of the number is asymptotic to the size of the middle layer of the n-dimensional Boolean lattice Bn. Although Kleitman confirmed the truth of this conjecture in 1969 [13], enumerating antichains in Bn has continued to generate interest in the mathe...

متن کامل

Completely separating systems of k-sets for (k-12) ≤ n < (k2) or 11 ≤ k ≤ 12

Here R(n, k) denotes the minimum possible size of a completely separating system C on [n] with |A| = k for each A ∈ C. Values of R(n, k) are determined for ( k−1 2 ) ≤ n < (k 2 ) or 11 ≤ n ≤ 12. Using the dual interpretation of completely separating systems as antichains, this paper provides corresponding results for dual k-regular antichains.

متن کامل

Separating Systems of k - sets for k = 11 or k = 12

R(n,k) denotes the minimum possible size of a completely separating system C on {1,2,…,n} with |A|=k for each set A of C. Values of R(n,k) are determined for k=11 or k=12 and several other results are mentioned. Using the dual interpretation of completely separating systems as antichains, it provides corresponding results for dual k-regular antichains.

متن کامل

Lattice of weak hyper K-ideals of a hyper K-algebra

In this note, we study the lattice structure on the class of all weak hyper K-ideals of a hyper K-algebra. We first introduce the notion of (left,right) scalar in a hyper K-algebra which help us to characterize the weak hyper K-ideals generated by a subset. In the sequel, using the notion of a closure operator, we study the lattice of all weak hyper K-ideals of ahyper K-algebra, and we prove a ...

متن کامل

DIRECTLY INDECOMPOSABLE RESIDUATED LATTICES

The aim of this paper is to extend results established by H. Onoand T. Kowalski regarding directly indecomposable commutative residuatedlattices to the non-commutative case. The main theorem states that a residuatedlattice A is directly indecomposable if and only if its Boolean center B(A)is {0, 1}. We also prove that any linearly ordered residuated lattice and anylocal residuated lattice are d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2010